(本小题满分12分)已知函数 .(1)讨论函数的单调性;(2)当时,恒成立,求实数的取值范围;(3)证明:.
坐标系与参数方程以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位, 圆的方程为,圆的参数方程为(为参数),求两圆的公共弦的长度。
几何证明选讲 如图,已知、是圆的两条弦,且是线段的垂直平分线,已知,求线段的长度.
(本小题满分12分)三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A. (1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ; (2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间; (3)设点A、B、C、D的横坐标分别为,,,求证;
(本小题满分12分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,求椭圆的方程; (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。
(本小题满分12分)如图,在多面体中,平面,,且是边长为2的等边三角形,与平面所成角的正弦值为. (Ⅰ)在线段上存在一点F,使得面,试确定F的位置; (Ⅱ)求二面角的平面角的余弦值.