(本小题满分15分)已知函数,曲线在点处的切线为若时,有极值.(1)求的值;(2)求在上的最大值和最小值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当< 时,求实数的取值范围.
如图,在四棱锥中,底面,是直角梯形,,,是的中点。 (1)求证:平面平面 (2)若二面角的余弦值为,求直线与平面所成角的正弦值.
某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:(1)比较这两名队员在比赛中得分的均值和方差的大小;(2)以上述数据统计甲、乙两名队员得分超过15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过15分的次数的分布列和均值.
已知数列满足,且(n2且n∈N*).(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前n项之和,求,并证明:.
设函数(I)画出函数的图象;(II)若不等式,恒成立,求实数a的取值范围.