如图已知∠ABC与∠ACB的外角∠ACB的平争线交于点D,若∠A=50°求∠D的度数;猜想∠D与∠A的关系,并说明理由。
如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为轴、轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在轴上),抛物线经过A、C两点,与轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.求B点坐标;求证:ME是⊙P的切线;设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=,△ACQ的面积 S△ACQ=,直接写出与之间的函数关系式.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A′B′C.如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;如图(2),连接A′A、B′B,设△ACA′ 和△BCB′ 的面积分别为S△ACA′ 和S△BCB′.求证:S△ACA′ :S△BCB′ =1:3;
甲乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留一小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为60km/h,两车间距离y(km)与乙车行驶时间x(h)之间的函数图象如下.将图中( )填上适当的值,并求甲车从A到B的速度.求从甲车返回到与乙车相遇过程中y与x的函数关系式,并写出自变量取值范围.求出甲车返回时行驶速度及AB两地的距离.
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB="90°," ∠E=45°,∠A=60°,AC=10,试求CD的长.
)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C级所占的圆心角的度数;根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?