如图所示,每一个小方格都是边长为1的单位正方形。△ABC的三个顶点都在格点上,以点O为坐标原点建立平面直角坐标系。(1)画出△ABC先向左平移3个单位,再向下平移2个单位的△A1B1C1,并写出点B1的坐标 ;(2)画出将△ABC绕点O顺时针旋转90°后的△A2B2C2,并求出点A旋转到A2所经过的路径长。
先化简,再求值:,其中.
如图,边长为4的正方形OABC的顶点O为坐标原点,点A 在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合), 连接OD,过点D作DE⊥OD,交边AB于点E,连接OE。 (1)当CD=1时,求点E的坐标; (2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这 个最大值及此时t的值;若不存在,请说明理由。
如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD. (1)求证:DC=BC; (2)若AB=5,AC=4,求tan∠DCE的值.
如图,在中,,,把边长分别为的个正方形依次放入中,请回答下列问题: (1)按要求填表 (2)第个正方形的边长; (3)若是正整数,且,试判断的关系.
将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于吗?若能,求出两段铁丝的长度;若不能,请说明理由.