某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.
解方程:
已知:,,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧。(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB的大小。
如图,在直角坐标系中,O为坐标原点,二次函数的图象与轴的正半轴交于点,与轴的正半轴交交于点,且.设此二次函数图象的顶点为。(1)求这个二次函数的解析式;(2)将绕点顺时针旋转后,点落到点的位置.将上述二次函数图象沿轴向上或向下平移后经过点.请直接写出点的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得二次函数图象与轴的交点为,顶点为.点在平移后的二次函数图象上,且满足的面积是面积的倍,求点的坐标。
已知关于的方程有实根。(1)求的值;(2)若关于的方程的所有根均为整数,求整数的值。
如图①,△ABC,,∠ABC=,将△ABC绕点A顺时针旋转得△AB ¢C ¢,设旋转的角度是。(1)如图②,当= °(用含的代数式表示)时,点B ¢恰好落在CA的延长线上;(2)如图③,连结BB ¢、CC ¢,CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形 , 。 (不含全等三角形)。