已知是公差为d的等差数列,是公比为q的等比数列(Ⅰ)若 ,是否存在,有?请说明理由;(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
已知抛物线通过点,且在点处与直线相切,求实数a、b、c的值.
求下列函数的导数:;
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界. 已知函数. (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以3为上界的有界函数,求实数的取值范围.
在直三棱柱中,, ,是的中点,是上一点,且. (1)求证:平面; (2)求三棱锥的体积; (3)试在上找一点,使得平面.
已知函数,常数. (1)讨论函数的奇偶性,并说明理由; (2)若函数在上为增函数,求的取值范围