已知是公差为d的等差数列,是公比为q的等比数列(Ⅰ)若 ,是否存在,有?请说明理由;(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
(本小题满分10分)已知函数= (2≤≤4) (1)令,求y关于t的函数关系式,t的范围. (2)求该函数的值域.
(本小题满分12分) 已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点(4,)到焦点的距离为5. (Ⅰ)求抛物线C的方程; (Ⅱ)若抛物线C与直线相交于不同的两点A、B,求证:.
(本小题满分12分)如图,在长方中,,,当E为AB中点时,求二面角的余弦值.
.(本小题满分12分) 设正数数列{an}的前n项和Sn满足. (1)求a1的值; (2)证明:an=2n-1; (3)设,记数列{bn}的前n项为Tn,求Tn.
(本小题满分10分) 在锐角中,内角对边的边长分别是,且, (Ⅰ)求角; (Ⅱ)若边, 的面积等于, 求边长和.