如图①所示,已知、为直线上两点,点为直线上方一动点,连接、,分别以、为边向外作正方形和正方形,过点作于点,过点作于点.如图②,当点恰好在直线上时(此时与重合),试说明;在图①中,当、两点都在直线的上方时,试探求三条线段、、之间的数量关系,并说明理由;如图③,当点在直线的下方时,请直接写出三条线段、、之间的数量关系.(不需要证明)
解方程
化简:
计算:
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于E ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值.
某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/时,100千米/时,两货运公司的收费项目及收费标准如下表所示:(元/吨·千米表示每吨货物每千米的运费,元/吨·小时表示每吨货物每小时的冷藏费)
(1)若该批发商待运的海产品有30吨,为节省运费,应选哪个? (2)若该批发商待运的海产品有60吨,为节省运费,又应选哪个? (3)当该批发商待运多少吨海产品时,无论选哪家都一样?