(本小题满分14分)规定其中x∈R,m为正整数,且=1,这是排列数A(n,m是正整数,且m≤n)的一种推广.(1)求A的值; (2)确定函数的单调区间. (3) 若关于的方程只有一个实数根, 求的值.
已知函数是函数的导函数,其中实数a是不等1的常数。(1)设,讨论函数在区间内零点的个数;(2)求证:当内恒成立。
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,点M是棱PC的中点,平面ABCD,AC、BD交于点O。(1)求证:,求证:AM平面PBD;(2)若二面角M—AB—D的余弦值等于,求PA的长
袋子中有相同大小的红球3个及白球4个,现从中随机取球。(1)取球3次,每次取后放回,求取到红球至少2次的概率;(2)现从袋子中逐个不放回的取球,若取到红球则继续取球,取到白球则停止取球,求取球次数的分布列与均值。
已知函数(1)将的解析基本功化成的形式,并求函数图象离y轴最近的对称轴的方程;(2)求函数内的值域
:已知点列满足:,其中,又已知,.(1)若,求的表达式;(2)已知点B,记,且成立,试求a的取值范围;(3)设(2)中的数列的前n项和为,试求: 。