(本小题满分13分)若的展开式的二项式系数和为128,(1)求展开式中的常数项; (2)求展开式中二项式系数最大的项;(3)求的值.
如图,在四棱锥中,底面是边长为的正方形,侧面底面,且,、分别为、的中点.(1)求证:平面; (2)求证:面平面; (3)在线段上是否存在点,使得二面角的余弦值为?说明理由.
地为绿化环境,移栽了银杏树棵,梧桐树棵.它们移栽后的成活率分别为、,每棵树是否存活互不影响,在移栽的棵树中:(1)求银杏树都成活且梧桐树成活棵的概率;(2)求成活的棵树的分布列与期望.
设函数,.(1)若,求的最大值及相应的的取值集合;(2)若是的一个零点,且,求的值和的最小正周期.
已知椭圆的右焦点为,离心率,是椭圆上的动点.(1)求椭圆标准方程;(2)若直线与的斜率乘积,动点满足,(其中实数为常数).问是否存在两个定点,使得?若存在,求的坐标及的值;若不存在,说明理由.
已知函数.(1)当时,求的极值;(2)若对恒成立,求实数的取值范围.