(本小题满分14分) 设函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)当时,若函数在上是增函数,求的取值范围;(Ⅲ)若,不等式对任意恒成立,求整数的最大值.
(理科)已知椭圆C:的离心率为,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.
(理科)已知椭圆的两个焦点分别为,.点与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆的方程;(Ⅱ)已知点的坐标为,点的坐标为.过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,若,试求满足的关系式.
(理科)已知椭圆:()的离心率,原点到过点,的直线的距离是. (1)求椭圆的方程; (2)若椭圆上一动点关于直线的对称点为,求的取值范围. (3)如果直线()交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.
(理科)已知中心在原点,焦点在轴上的椭圆过点,离心率为,点为其右顶点.过点作直线与椭圆相交于两点,直线,与直线分别交于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围.
(文科)在平面直角坐标系中,动点到定点的距离比点到轴的距离大,设动点的轨迹为曲线,直线交曲线于两点,是线段的中点,过点作轴的垂线交曲线于点.(Ⅰ)求曲线的方程;(Ⅱ)证明:曲线在点处的切线与平行;(Ⅲ)若曲线上存在关于直线对称的两点,求的取值范围.