设是两个不共线的非零向量.(1)若=,=,=,求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线. (本小题满分13分)
(本小题满分l3分) 设椭圆的焦点分别为、,直线:交轴于点,且. (1)试求椭圆的方程;
(2)过、分别作互相垂直的两直线与椭圆分别
设数列(1)求; (2)求的表达式.
. 甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下: 甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数; (2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由; (3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
(本小题满分12分)已知向量(I)若,求的值;(II)记,在中,角的对边分别是,且满足,求函数的取值范围。
本小题满分14分)已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于。(1)证明:椭圆上的点到F2的最短距离为;(2)求椭圆的离心率e的取值范围;(3)设椭圆的短半轴长为1,圆F2与轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。