在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字,2,4,- . 小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.用列表法或画树状图,表示所有这些点的坐标;小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在第一象限时小明获胜,否则小华获胜. 你认为这个游戏公平吗?请说明理由.
比较两个角的大小,有以下两种方法(规则) ①用量角器度量两个角的大小,用度数表示,则角度大的角大; ②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.注:构造图形时,作示意图(草图)即可.
用如图所示的三等分的圆盘转两次做“配紫色(红色+蓝色)”游戏,配出紫色的概率用公式计算. 请问:m和n分别是多少?m 和n 的意义分别是什么?
甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:
(1)根据上表数据,完成下列分析表:
(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?
解不等式组 注:不等式(1)要给出详细的解答过程.
如图,已知AB=DC,DB=AC (1)求证:∠ABD=∠DCA 注:证明过程要求给出每一步结论成立的依据. (2)在(1)的证明过程中,需要作辅助线,它的意图是什么?