(本小题满分l2分)已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn(n∈N*).(1)求数列{an}和{bn}的通项公式;(2)若Tn=++…+,求Tn的表达式
已知为函数图象上一点,O为坐标原点,记直线的斜率. (1)若函数在区间上存在极值,求实数m的取值范围; (2)设,若对任意恒有,求实数的取值范围.
已知椭圆:()的右焦点,右顶点,且. (1)求椭圆的标准方程; (2)若动直线:与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.
如右图,在底面为平行四边形的四棱柱中,底面,,,. (1)求证:平面平面; (2)若,求四棱锥的体积.
某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
(1)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率; (2)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为,求x、y的值.
已知函数,的最大值为2. (1)求函数在上的值域; (2)已知外接圆半径,,角所对的边分别是,求的值.