如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(,0),点B在抛物线上.(1)点A的坐标为 ,点B的坐标为 ;(2)抛物线的解析式为 ;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使ΔACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由。
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.
如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3. (1)求EC的值; (2)求证:AD•AG=AF•AB.
解方程: (1)x(x-2)=x-2; (2)(x+8)(x+1)=-12.
如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)在线段OB上,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD. (1)求抛物线的解析式; (2)求点C的坐标(用含m的代数式表示); (3)当四边形ABCD是平行四边形时,求点P的坐标.
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF. (1)若取AE的中点P,求证:; (2)在图①中,若将△BEF绕点B顺时针方向旋转(<<),如图②,是否存在某位置,使得AE∥BF,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;