(本题满分12分)已知都是正数,且求的最小值.
已知函数,为自然对数的底数). (Ⅰ)当时,求的单调区间; (Ⅱ)若函数在上无零点,求最小值; (Ⅲ)若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.
给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),且其短轴上的一个端点到F的距离为. (Ⅰ)求椭圆C的方程和其“准圆”方程; (Ⅱ)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直,并说明理由.
已知函数=x2+(a∈R). (Ⅰ)若在x=1处的切线垂直于直线x-14y+13=0,求该点的切线方程,并求此时函数的单调区间; (Ⅱ)若≤a2-2a+4对任意的x∈[1,2]恒成立,求实数a的取值范围.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°. (Ⅰ)求证:平面PAB⊥平面PAD; (Ⅱ)设AB=AP. (ⅰ) 若直线PB与平面PCD所成的角为30°,求线段AB的长; (ⅱ) 在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.
等差数列{}的各项均为正数,=3,前项和为,等比数列{}中,=1,=64,{}是公比为64的等比数列. (Ⅰ)求与; (Ⅱ)证明:+++…+<.