设集合,若,求实数a的取值范围.
设函数f(x)=2cos2x+2sinxcosx-1(x∈R).(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期.(2)若x∈[0,],求函数f(x)的最大值与最小值.
已知函数f(x)=cos2(x-)-sin2x.(1)求f()的值.(2)若对于任意的x∈[0,],都有f(x)≤c,求实数c的取值范围.
函数f(x)=sin2x--.(1)若x∈[,],求函数f(x)的最值及对应的x的值.(2)若不等式[f(x)-m]2<1在x∈[,]上恒成立,求实数m的取值范围.
若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,]时,f(x)的最大值为1.(1)求函数f(x)的解析式.(2)求函数f(x)的单调递增区间.
已知函数f(x)=sinsin(+).(1)求函数f(x)在[-π,0]上的单调区间.(2)已知角α满足α∈(0,),2f(2α)+4f(-2α)=1,求f(α)的值.