如图,椭圆 M : x 2 a 2 + y 2 b 2 = 1 a > b > 0 的离心率为 3 2 ,直线 x = ± a 和 y = ± b 所围成的矩形 A B C D 的面积为8.
(Ⅰ)求椭圆 M 的标准方程; (Ⅱ) 设直线 l : y = x + m m ∈ R 与椭圆 M 有两个不同的交点 P , Q , L 与矩形 A B C D 有两个不同的交点 S , T .求 P Q S T 的最大值及取得最大值时 m 的值.
已知sin(+)=-,cos()=,且<<<,求sin2.
若的值.
已知,若是第二象限角,求实数的值.
(本小题满分10分)数列的前项和为,,. (Ⅰ)求数列的通项;(Ⅱ)求数列的前项和.
已知成等差数列.又数列此数列的前n项的和Sn()对所有大于1的正整数n都有.(1)求数列的第n+1项;(2)若的等比中项,且Tn为{bn}的前n项和,求Tn.