设抛物线 C : x 2 = 2 p y p > 0 的焦点为 F ,准线为 l , A ∈ C ,已知以 F 为圆心, F A 为半径的圆 F 交 l 于 B , D 两点; (1)若 ∠ B F D = 90 ° , ∆ A B D 的面积为 4 2 ;求 p 的值及圆 F 的方程; (2)若 A , B , F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点,求坐标原点到 m , n 距离的比值.
在△ABC中,a=3,c=3,A=300,则角C及b.
在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足2sin(A+B)-=0,求角C的度数,边c的长度.
在中, ⑴ 已知: acosB="bcosA" ,试判断形状; ⑵求证:。
已知椭圆,试确定的值,使得在此椭圆上存在不同 两点关于直线对称。
已知数列中,,前项和为 (I)证明数列是等差数列,并求出数列的通项公式; (II)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值。