设抛物线 C : x 2 = 2 p y p > 0 的焦点为 F ,准线为 l , A ∈ C ,已知以 F 为圆心, F A 为半径的圆 F 交 l 于 B , D 两点; (1)若 ∠ B F D = 90 ° , ∆ A B D 的面积为 4 2 ;求 p 的值及圆 F 的方程; (2)若 A , B , F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点,求坐标原点到 m , n 距离的比值.
已知的展开式中,第5项的系数与第3项的系数比是10:1 求:(1) 展开式中含的项 (2) 展开式中二项式系数最大的项 (3) 展开式中系数最大的项
一个袋中有10个大小相同的黑球、白球和红球,已知从袋中任意摸出一个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是 (1)求袋中白球的个数; (2)若将其中的红球拿出,从剩余的球中一次摸出3个球,求恰好摸到2个白球的概率; (3)在(2)的条件下,一次摸出3个球,求取得白球数X的数学期望。
设,, (1)当时,若 求。 (2)当时,若展开式中的系数是20,求的值。 (3)展开式中的系数是19,当,变化时,求系数的最小值。
已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人. (1)求此人患色盲的概率; (2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式)
用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数? (2)能组成多少个无重复数字且为5的倍数的五位数? (3)能组成多少个无重复数字且比1325大的四位数?(以上各问均用数字作答)