如图,已知抛物线的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.求该抛物线的函数关系式;求点P在运动的过程中,线段PD的最大值;当△ADP是直角三角形时,求点P的坐标;在题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
蓄电池的电压为定植,使用此电源时,电流I()和电阻R(成反比例函数关系,且当I=4A,R=5. (1)蓄电池的电压是多少?请你写出这一函数的表达式. (2)当电流喂A时,电阻是多少? (3)当电阻是10.时,电流是多少? (4)如果以此蓄电池为电源的用电器限制电流不超过10A,那么用电器的可变电阻应该控制在什么范围内?
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度(四面条的粗细(横截面积)S(的反比例函数,其图象如图所示. (1)写出与S的函数关系式; (2)求当面条粗1.6时,面条的总长度是多少米?
观察下列勾股数: 第一组:3=2×1+1, 4=2×1×(1+1), 5=2×1×(1+1)+1; 第二组:5=2×2+1, 12=2×2×(2+1), 13=2×2×(2+1)+1; 第三组:7=2×3+1, 24=2×3×(3+1), 25=2×3×(3+1)+1; 第三组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1; …… 观察以上各组勾股数的组成特点,你能求出第七组的各应是多少吗?第组呢?
如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.
如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.