某企业投资1千万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过年后该项目的资金为万元.1)写出数列的前三项,并猜想写出通项.2)求经过多少年后,该项目的资金可以达到或超过千万元.
设△的内角所对边的长分别为,且有. (Ⅰ)求角A的大小; (Ⅱ)若,,为的中点,求的长.
已知数列为等差数列,为其前项和,且 (1)求数列的通项公式;(2)求证:数列是等比数列;
若为正实数且满足. (1)求的最大值为;(2)求的最大值.
已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为. (Ⅰ)求曲线直角坐标方程; (Ⅱ)若曲线、交于A、B两点,定点,求的值.
曲线在矩阵的变换作用下得到曲线. (Ⅰ)求矩阵; (Ⅱ)求矩阵的特征值及对应的一个特征向量.