学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。
设是定义在(0,+∞)上的减函数,且有(1)求的值(2)若,求不等式的解集。
已知为上的偶函数,且当≥0时,,则(1)在R上的解析式为;(2)写出的单调区间.
设集合,,求的取值范围。
(本小题满分14分)已知幂函数在定义域上递增。(1)求实数k的值,并写出相应的函数的解析式;(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
(本小题12分)已知函数 (1)求函数的值域;(2)若时,函数的最小值为,求的值和函数 的最大值。