计算
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。 原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。 (1)思路梳理 ∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。 ∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线。 根据__ __________,易证△AFG≌_ _______,得EF=BE+DF。 (2)类比引申 如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系_ ___时,仍有EF=BE+DF。 (3)联想拓展 如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。
我区某房地产开发公司于2013年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格(单位:)与月份x(6≤x≤11,x为整数)之间满足一次函数关系,每月的销售面积为(单位:),其中y2=-2000x+26000(6≤x≤11,x为整数). (1)求与月份的函数关系式; (2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元? (3)2013年11月时,因受某些因素影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少,于是决定将12月份的销售价格在11月的基础上增加,该计划顺利完成.为了尽快收回资金,2014年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为万元,请根据以上条件求出的值为多少?
如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC. (1)判断直线PF与AC的位置关系,并说明你的理由; (2)当⊙O的半径为5,tan∠P=,求AC的长.
某校组织了“安全在我心中”知识竞赛活动.根据获奖同学在竞赛中的成绩制成的统计图表如下: 根据以上图表提供的信息,解答下列问题: (1)写出表中x, y的数值; (2)请补全频数分布直方图; (3)如果成绩在95分以上(含95分)的可以获得特等奖,那么获奖的同学获得特等奖的概率是多少? (4)获奖成绩的中位数落在哪个分数段?