已知椭圆的中心为原点 O ,长轴在 x 轴上,上顶点为 A ,左、右焦点分别为 F 1 , F 2 ,线段 O F 1 , O F 2 的中点分别为 B 1 , B 2 ,且 △ A B 1 B 2 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过 B 1 作直线交椭圆于 P , Q , P B 2 ⊥ Q B 2 ,求 △ P B 2 Q 的面积.
甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
若双曲线与椭圆有相同的焦点,与双曲线有相同渐近线,求双曲线方程.
已知数列满足:且.(1)求数列的前三项;(2)是否存在一个实数,使数列为等差数列?若存在,求出的值;若不存在,说明理由;(3)求数列的前项和.
已知圆和点(1)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(2)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离.(Ⅰ)求的值;(Ⅱ)求两弦长之积的最大值.
已知是正方形,⊥面,且,是侧棱的中点.(1)求证∥平面;(2)求证平面平面;(3)求直线与底面所成的角的正切值.