已知椭圆的中心为原点 O ,长轴在 x 轴上,上顶点为 A ,左、右焦点分别为 F 1 , F 2 ,线段 O F 1 , O F 2 的中点分别为 B 1 , B 2 ,且 △ A B 1 B 2 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过 B 1 作直线交椭圆于 P , Q , P B 2 ⊥ Q B 2 ,求 △ P B 2 Q 的面积.
设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0 求证:(1)a>0,-2<<-1 (2)函数f(x)在(0,1)内有零点。
若a2-a+1<0,求使不等式x2+ax+1>2x+a成立的x的取值范围.
(本小题共14分) 已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率; (II)将表示为m的函数,并求的最大值.
(本小题满分13分)双曲线的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.
(本小题满分14分) 如图,设是圆上的动点,点D是在轴上的投影,M为D上一点,且 (Ⅰ)当的在圆上运动时,求点M的轨迹C的方程; (Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。