在平面直角坐标系 x O y 中, F 是抛物线 C : x 2 = 2 p y ( p > 0 ) 的焦点, M 是抛物线 C 上位于第一象限内的任意一点,过 M , F , O 三点的圆的圆心为 Q ,点 Q 到抛物线 C 的准线的距离为 3 4 . (Ⅰ)求抛物线 C 的方程; (Ⅱ)是否存在点 M ,使得直线 M Q 与抛物线 C 相切于点 M ?若存在,求出点 M 的坐标;若不存在,说明理由; (Ⅲ)若点 M 的横坐标为 2 ,直线 l : y = k x + 1 4 与抛物线 C 有两个不同的交点 A , B , l 与圆 Q 有两个不同的交点 D , E ,求当 1 2 ≤ k ≤ 2 时, A B 2 + D E 2 的最小值.
(本小题满分13分) 已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上. (1)求椭圆C的方程; (2)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切圆的方程.
(本小题满分12分) 如图,在四棱锥中,,,平面,为的中点,. (1)求证:∥平面; (2)求四面体的体积.
(本小题满分12分) 已知函数,的最大值为2. (1)求函数在上的值域; (2)已知外接圆半径,,角所对的边分别是,求的值.
(本小题满分12分)已知幂函数为偶函数,且在区间上是单调增函数 (1)求函数的解析式; (2)设函数,其中.若函数仅在处有极值,求的取值范围.
已知函数,各项均不相等的有限项数列的各项满足.令,且,例如:. (Ⅰ)若,数列的前n项和为Sn,求S19的值; (Ⅱ)试判断下列给出的三个命题的真假,并说明理由。 ①存在数列使得;②如果数列是等差数列,则; ③如果数列是等比数列,则。