如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.求新传送带AC的长度;如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
【提出问题】 (1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN. 【类比探究】 (2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由. 【拓展延伸】 (3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
据《2012年衢州市国民经济和社会发展统计公报》(2013年2月5日发布),衢州市固定资产投资的相关数据统计图如下: 根据以上信息,解答下列问题: (1)求2012年的固定资产投资增长速度(年增长速度即年增长率); (2)求2005﹣2012年固定资产投资增长速度这组数据的中位数; (3)求2006年的固定资产投资金额,并补全条形图; (4)如果按照2012年的增长速度,请预测2013年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?
如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E. (1)求证:直线CD是⊙O的切线; (2)若DE=2BC,求AD:OC的值.
如图,函数的图象与函数(x>0)的图象交于A(a,1)、B(1,b)两点. (1)求函数y2的表达式; (2)观察图象,比较当x>0时,y1与y2的大小.
如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形. (1)用a,b,x表示纸片剩余部分的面积; (2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.