已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(1)求的解析式; (2)当,求的值域.
(本小题满分12分) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.
(本小题满分12分)已知函数 (Ⅰ)求函数的最小正周期。 (Ⅱ)求函数的最大值及取最大值时x的集合。
设函数,其中,。 (1)若,求曲线在点处的切线方程; (2)是否存在负数,使对一切正数都成立?若存在,求出的取值范围;若不存在,请说明理由。
已知分别是椭圆的左、右 焦点,已知 点满足,且。设是上半椭圆上且满足的两点。 (1)求此椭圆的方程; (2)若,求直线AB的斜率。
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为 R万元,且R (1)写出年利润关于年产量的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。 (注:年利润=年销售收入-年总成本)