已知 a 为正实数, n 为自然数,抛物线 y = - x 2 + a n 2 与 x 轴正半轴相交于点 A ,设 f n 为该抛物线在点 A 处的切线在 y 轴上的截距。 (Ⅰ)用 a 和 n 表示; (Ⅱ)求对所有 n 都有 f n - 1 f n + 1 ≥ n n + 1 成立的 a 的最小值; (Ⅲ)当 0 < a < 1 时,比较 1 f 1 - f 2 + 1 f 2 - f 4 + … + 1 f n - f 2 n 与 6 · f 1 - f n + 1 f 0 - f 1 的大小,并说明理由。
一个计算装置有两个数据输入口Ⅰ、Ⅱ与一个运算结果输出口Ⅲ,当Ⅰ、Ⅱ分别输入正整数时,输出结果记为,且计算装置运算原理如下:①若Ⅰ、Ⅱ分别输入1,则;②若Ⅰ输入固定的正整数,Ⅱ输入的正整数增大1,则输出结果比原来增大3;③若Ⅱ输入1,Ⅰ输入正整数增大1,则输出结果为原来3倍。试求:(1)的表达式;(2)的表达式;(3)若Ⅰ、Ⅱ都输入正整数,则输出结果能否为2013?若能,求出相应的;若不能,则请说明理由。
已知椭圆C的方程为,双曲线的两条渐近线为,过椭圆C的右焦点F作直线,使,又与交于P,设与椭圆C的两个交点由上至下依次为A、B(如图). (1)当与的夹角为,且△POF的面积为时,求椭圆C的方程;(2)当时,求当取到最大值时椭圆的离心率.
一个四棱锥的底面是边长为的正方形,侧面展开图如图所示.为四棱锥中最长的侧棱,点为的中点(1)画出四棱锥的示意图,求二面角的大小;(2)求点到平面的距离.
设:方程有两个不等的负根,:方程无实根,若p或q为真,p且q为假,求的取值范围.
现有一批产品共有件,其中件为正品,件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续次取出的都是正品的概率;(2)如果从中一次取件,求3件都是正品的概率.