已知 a 为正实数, n 为自然数,抛物线 y = - x 2 + a n 2 与 x 轴正半轴相交于点 A ,设 f n 为该抛物线在点 A 处的切线在 y 轴上的截距。 (Ⅰ)用 a 和 n 表示; (Ⅱ)求对所有 n 都有 f n - 1 f n + 1 ≥ n n + 1 成立的 a 的最小值; (Ⅲ)当 0 < a < 1 时,比较 1 f 1 - f 2 + 1 f 2 - f 4 + … + 1 f n - f 2 n 与 6 · f 1 - f n + 1 f 0 - f 1 的大小,并说明理由。
(本小题满分12分) 设,当时,对应值的集合为. (1)求的值;(2)若,求该函数的最值.
(本小题满分12分) 判断并证明函数在上的单调性.
(本小题满分12分) 已知集合,,,. (1)求; (2)若,求实数的取值范围.
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件)之间,可近似看做一次函数的关系(图象如图所示). (1)根据图象,求一次函数的表达式; (2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元: ①求S关于的函数表达式; ②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
已知函数, 其中(且 ⑴求函数的定义域; ⑵判断函数的奇偶性,并予以证明; ⑶判断它在区间(0,1)上的单调性并说明理由。