如图,动点 M 与两定点 A - 1 , 0 、 B 1 , 0 构成 △ M A B ,且直线 M A , M B 的斜率之积为4,设动点 M 的轨迹为 C 。
(Ⅰ)求轨迹 C 的方程; (Ⅱ)设直线 y = x + m m > 0 与 y 轴交于点 P ,与轨迹 C 相交于点 Q , R ,且 P Q < P R ,求 P R P Q 的取值范围。
设函数. (Ⅰ)若x=时,取得极值,求的值; (Ⅱ)若在其定义域内为增函数,求的取值范围; (Ⅲ)设,当=-1时,证明在其定义域内恒成立,并证明().
设函数,, 其中|t|≤1,将f(x)的最小值记为g(t). (1)求g(t)的表达式; (2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.
已知函数f(x)=x3+ax2+b的图象在点P(1,0)处的切线与直线3x+y=0平行, (1)求常数a、b的值; (2)求函数f(x)在区间[0,t]上的最小值和最大值。(t>0)
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。 (1)求直线ON(O为坐标原点)的斜率KON ; (2)对于椭圆C上任意一点M,试证:总存在角(∈R)使等式:=cos+sin成立。
已知过点A(0,1),且方向向量为,相交于M、N两点. (1)求实数的取值范围; (2)求证:; (3)若O为坐标原点,且.