多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百慕大三角.根据图中标出的百慕大三角的位置及相关数据计算:∠BAC的度数;百慕大三角的面积.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.
图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个 即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);
先化简,再求代数式 1 x + x + 1 x ÷ x + 2 x 2 + x 的值,其中x=cos300+
已知半径为1cm的圆,在下面三个图中AC=10cm,AB=6cm,BC=8cm,在图2中∠ABC=90°.(1)如图1,若将圆心由点A沿AC方向运动到点C,求圆扫过的区域面积;(2)如图2,若将圆心由点A沿ABC方向运动到点C,求圆扫过的区域面积;(3)如图3,若将圆心由点A沿ABCA方向运动回到点A.则I)阴影部分面积为_ ___;Ⅱ)圆扫过的区域面积为__ __.