在平面直角坐标系 x O y 中,已知双曲线 C 1 : 2 x 2 - y 2 = 1 . (1)过 C 1 的左顶点引 C 1 的一条渐近线的平行线,求该直线与另一条渐近线及 x 轴围成的三角形的面积; (2)设斜率为1的直线 l 交 C 1 于 P . Q 两点,若 l 与圆 x 2 + y 2 = 1 相切,求证: O P ⊥ O Q ; (3)设椭圆 C 2 : 4 x 2 + y 2 = 1 . 若 M , N 分别是 C 1 、 C 2 上的动点,且 O M ⊥ O N ,求证: O 到直线 M N 的距离是定值.
已知点M到点的距离比到点M到直线的距离小4;(Ⅰ)求点M的轨迹的方程;(Ⅱ)若曲线C上存在两点A,B关于直线l:对称,求直线AB的方程
已知展开式中各项的二项式系数和比各项的系数和大256;(Ⅰ)求展开式中的所有无理项的系数和;(Ⅱ)求展开式中系数最大的项.
已知恒成立,方程表示焦点在轴上的椭圆,若命题“且”为假,求实数的取值范围.
(本小题满分10分)选修4—5:不等式选讲已知实数满足,且.(Ⅰ)证明:;(Ⅱ)证明:.
(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长; (2)在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为 ,求点到线段中点的距离.