在平面直角坐标系 x O y 中,已知双曲线 C 1 : 2 x 2 - y 2 = 1 . (1)过 C 1 的左顶点引 C 1 的一条渐近线的平行线,求该直线与另一条渐近线及 x 轴围成的三角形的面积; (2)设斜率为1的直线 l 交 C 1 于 P . Q 两点,若 l 与圆 x 2 + y 2 = 1 相切,求证: O P ⊥ O Q ; (3)设椭圆 C 2 : 4 x 2 + y 2 = 1 . 若 M , N 分别是 C 1 、 C 2 上的动点,且 O M ⊥ O N ,求证: O 到直线 M N 的距离是定值.
已知中,、、是三个内角、、的对边,关于的不等式的解集是空集. (1)求角的最大值; (2)若,的面积,求当角取最大值时的值.
如图,设是椭圆(a>b>0)的左焦点,直线为对应的准线,直线与轴交于点, 为椭圆的长轴,已知,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)求证:对于任意的割线,恒有; (Ⅲ)求△面积的最大值.
已知函数, , (Ⅰ)设函数,,若函数没有零点,求的取值范围;(Ⅱ)若总有成立,求实数的取值范围.
已知数列的前n项和为,且满足 (Ⅰ)求的值; (Ⅱ)求数列的通项公式; (Ⅲ)若,数列的前n项和为求满足不等式的最小n值.
如图,已知平面是正三角形,。(Ⅰ)若是的中点,求证平面; (Ⅱ)求证:平面平面; (Ⅲ)求直线与平面所成的角的正切值。