海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里 A 处,如图. 现假设:①失事船的移动路径可视为抛物线 y = 12 49 x 2 ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发 t 小时后,失事船所在位置的横坐标为.
(1)当 t = 0 . 5 时,写出失事船所在位置 P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?
已知△ABC的内角为A、B、C,其对边分别为a、b、c,B为锐角,向量m=(2sin B,-),n=,且m∥n (1)求角B的大小; (2)如果b=2,求S△ABC的最大值.
已知函数f(x)=2sin x(sin x+cos x). (1)求函数f(x)的最小正周期和最大值; (2)在给出的平面直角坐标系中,画出函数y=f(x)在区间上的图象.
已知函数f(x)=ax2-ln x,x∈(0,e],其中e是自然对数的底数,a∈R. (1)当a=1时,求函数f(x)的单调区间与极值; (2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
设函数f(x)=x3-ax2-ax,g(x)=2x2+4x+c. (1)试问函数f(x)能否在x=-1时取得极值?说明理由; (2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证: (1)a>0,且-3<<-; (2)函数f(x)在区间(0,2)内至少有一个零点; (3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.