在直角坐标系 x O y 中,已知中心在原点,离心率为 1 2 的椭圆 E 的一个焦点为圆 C : x 2 + y 2 - 4 x + 2 = 0 的圆心. (Ⅰ)求椭圆 E 的方程; (Ⅱ)设 P 是椭圆 E 上一点,过 P 作两条斜率之积为 1 2 的直线 l 1 : l 2 .当直线 l 1 : l 2 都与圆 C 相切时,求 P 的坐标.
已知函数(其中是常数). (1)若当时,恒有成立,求实数的取值范围; (2)若存在,使成立,求实数的取值范围; (3)若方程在上有唯一实数解,求实数的取值范围.
对于定义域为的函数,若同时满足下列条件: ①在内单调递增或单调递减; ②存在区间,使在上的值域为;那么把()叫闭函数. (1)求闭函数符合条件②的区间; (2)判断函数是否为闭函数?并说明理由; (3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
如图,在三棱柱中,四边形是边长为4的正方形,平面平面,,. (Ⅰ)求证:平面; (Ⅱ)若点是线段的中点,请问在线段是否存在点,使得面?若存在,请说明点的位置,若不存在,请说明理由; (Ⅲ)求二面角的大小.
四棱锥中,底面是边长为8的菱形,,若,平面平面. (1)求四棱锥的体积; (2)求证:.
已知集合,,如果,求实数的取值范围.