若函数 h ( x ) 满足 (1) h ( 0 ) = 1 , h ( 1 ) = 0 ; (2)对任意 a ∈ [ 0 , 1 ] ,有 h ( h ( a ) ) = a ; (3)在(0,1)上单调递减。则称 h ( x ) 为补函数。已知函数 h ( x ) = ( 1 - x p 1 + λ x p ) 1 p ( λ > - 1 , p > 0 ) .
(1)判函数 h ( x ) 是否为补函数,并证明你的结论; (2)若存在 m ∈ [ 0 , 1 ] ,使得 h ( m ) = m ,若 m 是函数 h ( x ) 的中介元,记 p = 1 n ( n ∈ N * ) 时 h ( x ) 的中介元为 x n ,且 S n = ∑ i = 1 n x i ,若对任意的 n ∈ N + ,都有 S n < 1 2 ,求 λ 的取值范围; (3)当 λ = 0 , x ∈ ( 0 , 1 ) 时,函数 y = h ( x ) 的图像总在直线 y = 1 - x 的上方,求P的取值范围。
已知为数列的前项和,求下列数列的通项公式: ⑴ ;⑵.
已知数列和满足:,,, 其中为实数,. ⑴ 对任意实数,证明数列不是等比数列; ⑵ 证明:当,数列是等比数列; ⑶设为数列的前项和,是否存在实数,使得对任意正整数,都有? 若存在,求的取值范围;若不存在,说明理由.
(本小题共16分)设函数. (Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的单调区间; (Ⅲ)若函数在区间内单调递增,求的取值范围.
20090423
已知函数,,
设数列{}的前n项和为,若(t为正常数,n=2,3,4…). (1)求证:{}为等比数列;(2)设{}公比为,作数列使,试求,并求