若函数 h ( x ) 满足 (1) h ( 0 ) = 1 , h ( 1 ) = 0 ; (2)对任意 a ∈ [ 0 , 1 ] ,有 h ( h ( a ) ) = a ; (3)在(0,1)上单调递减。则称 h ( x ) 为补函数。已知函数 h ( x ) = ( 1 - x p 1 + λ x p ) 1 p ( λ > - 1 , p > 0 ) .
(1)判函数 h ( x ) 是否为补函数,并证明你的结论; (2)若存在 m ∈ [ 0 , 1 ] ,使得 h ( m ) = m ,若 m 是函数 h ( x ) 的中介元,记 p = 1 n ( n ∈ N * ) 时 h ( x ) 的中介元为 x n ,且 S n = ∑ i = 1 n x i ,若对任意的 n ∈ N + ,都有 S n < 1 2 ,求 λ 的取值范围; (3)当 λ = 0 , x ∈ ( 0 , 1 ) 时,函数 y = h ( x ) 的图像总在直线 y = 1 - x 的上方,求P的取值范围。
已知函数. (1)当时,求函数的单调区间; (2)当时,不等式恒成立,求实数的取值范围. (3)求证:(其中, e是自然对数的底数).
已知数列满足:, (1)求、; (2)猜想的通项公式,并用数学归纳法证明. (3)求证: ()
已知函数f(x)=ex,a,bR,且a>0. (1)若a=2,b=1,求函数f(x)的极值; (2)设g(x)=a (x-1)ex-f(x).当a=1时,对任意x(0,+∞),都有g(x)≥1成立,求b的最大值;
设复数的共轭复数为,已知, (1)求复数及; (2)求满足的复数对应的点的轨迹方程.
已知关于的方程有实数根b. (1)求实数的值. (2)若复数满足. 求z为何值时,|z|有最小值,并求出|z|的最小值.