若函数 h ( x ) 满足 (1) h ( 0 ) = 1 , h ( 1 ) = 0 ; (2)对任意 a ∈ [ 0 , 1 ] ,有 h ( h ( a ) ) = a ; (3)在(0,1)上单调递减。则称 h ( x ) 为补函数。已知函数 h ( x ) = ( 1 - x p 1 + λ x p ) 1 p ( λ > - 1 , p > 0 ) .
(1)判函数 h ( x ) 是否为补函数,并证明你的结论; (2)若存在 m ∈ [ 0 , 1 ] ,使得 h ( m ) = m ,若 m 是函数 h ( x ) 的中介元,记 p = 1 n ( n ∈ N * ) 时 h ( x ) 的中介元为 x n ,且 S n = ∑ i = 1 n x i ,若对任意的 n ∈ N + ,都有 S n < 1 2 ,求 λ 的取值范围; (3)当 λ = 0 , x ∈ ( 0 , 1 ) 时,函数 y = h ( x ) 的图像总在直线 y = 1 - x 的上方,求P的取值范围。
已知函数在一个周期内的图象如图所示.(1)求函数的解析式;(2)设,且方程有两个不同的实数根,求实数的取值范围以及这两个根的和.
设函数,其中(1)求函数的最小正周期和在上的单调递增区间;(2)当时,恒成立,求实数的取值范围.
已知函数(1)求的最小正周期及在上的最值;(2)若,,求
已知,其中,求:(1);;(2)与的夹角的余弦值.
已知,求的值.