如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.求证:△DHQ∽△ABC;求y关于x的函数解析式并求y的最大值;当x为何值时,△HDE为等腰三角形?
(本题8分)(1)如图1,Rt△ABC中,AB=AC,∠BAC=90°,直线AE是经过点A的任一直线,BD⊥AE于D,CE⊥AE于E,若BD>CE,试问:BD=DE+CE成立吗?请说明理由.(2)如图2,等腰△ABC中,AB=AC,若顶点A在直线m上,点D、E也在直线m 上,如果∠BAC=∠ADB=∠AEC=1100,那么(1)中结论还成立吗?如果不成立,BD、DE、CE三条线段之间有怎样的关系?并说明理由.
(本题5分)如图,有一块长为6.5单位长度,宽为2单位长度的长方形纸片,请把它分成6块,再拼成一个正方形,先在图中画出分割线,再画出拼后的图形,并标出相应的数据.
(本题7分)如图所示,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于O点,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可以判定△ABC是等腰三角形.(用序号数写出所有情况)(2)选择(1)中的一种情况,证明△ABC是等腰三角形.
(本题6分)如图,四边形ABCD中,AB=3,AD=4,BC=13,CD=12,∠A=90°,求BD的长和四边形ABCD的面积.
(本题6分)已知△ABC中,AB=AC=5,BC=6, AM平分∠BAC, D为AC的中点,E为BC延长线上一点,且CE=BC.(1)求ME的长;(2)求证:DB=DE