已知抛物线上横坐标为的点到焦点的距离为.(1)求抛物线的方程;(2)若斜率为的直线与抛物线交于两点,且点在直线的右上方,求证:△的内心在直线上.
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题: ①任意三次函数都关于点对称: ②存在三次函数,若有实数解,则点为函数的对称中心; ③存在三次函数有两个及两个以上的对称中心; ④若函数,则: 其中所有正确结论的序号是().
已知向量=(sin(+x),cosx),="(sinx,cosx)," f(x)= ·. (1)求f(x)的最小正周期和单调增区间; (2)如果三角形ABC中,满足f(A)=,求角A的值.
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD. (1)若G为AD边的中点,求证:BG⊥平面PAD; (2)求证:AD⊥PB; (3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
已知函数处取得极小值-4,使其导函数的取值范围为(1,3)。 (1)求的解析式及的极大值; (2)当的最大值。
已知函数 (1)若上单调递增,且,求证: (2)若处取得极值,且在时,函数的图象在直线的下方,求c的取值范围.