如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点都不与端点重合).(1)PQ+DQ的最小值是 ;(2)说出PQ+DQ取得最小值时,点P、点Q的位置,并在图8中画出;(3)请对(2)中你所给的结论进行证明.
如图所示,已知在四边形ABCD中,DA⊥AB,BC⊥AB,∠ADC与∠BCD的平分线交于点E,求∠DEC的度数.
在四边形ABCD中,∠A+∠B=180°,∠C:∠D=3:2,求∠C的度数.
如图所示,AB∥DE. (1)猜测∠A,∠ACD,∠D有什么关系,并证明你的结论. (2)若点C向右移动到线段AD的右侧,此时∠A,∠ACD,∠D之间的关系仍然满足(1)中的结论吗?若仍满足,请证明;若不满足,请你写出正确的结论并证明(要求:画出相应的图形).
求证“等腰三角形两腰上的中线相等”.
如图所示,CD⊥AB,垂足为D,点F是BC上任意一点,FE⊥AB,垂足为E,且∠CDG=∠BFE,∠AGD=80°,求∠BCA的度数.