某次运动会甲、乙两名射击运动员成绩如下:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;(1)用茎叶图表示甲,乙两个成绩;(2)分别计算两个样本的平均数和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.
如图,在正三棱锥中,,分别为,的中点. (1)求证:平面; (2)求证:平面平面.
已知. (1)若,求的值; (2)若,且,求的值.
已知为等差数列,且,公差. (1)数列满足结论;;试证:; (2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.
【原创】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
选修4 - 5:不等式选讲已知x,y,z均为正数.求证:.