如图,已知抛物线与轴交于A、B两点,与轴交于点C.求A、B、C三点的坐标.过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,直接写出所有满足要求的M点的坐标;否则,请说明理由.
某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为 ,图①中的值为 ;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
已知抛物线 C : y = x 2 - 2 x + 1 的顶点为 P ,与 y 轴的交点为 Q ,点 F ( 1 , 1 2 ) .
(Ⅰ) 求点 P , Q 的坐标;
(Ⅱ) 将抛物线 C 向上平移得到抛物线 C ' ,点 Q 平移后的对应点为 Q ' ,且 FQ ' = OQ ' .
①求抛物线 C ' 的解析式;
②若点 P 关于直线 Q ' F 的对称点为 K ,射线 FK 与抛物线 C ' 相交于点 A ,求点 A 的坐标 .
在平面直角坐标系中, O 为原点,点 A ( 4 , 0 ) ,点 B ( 0 , 3 ) ,把 ΔABO 绕点 B 逆时针旋转,得△ A ' BO ' ,点 A , O 旋转后的对应点为 A ' , O ' ,记旋转角为 α .
(Ⅰ)如图①,若 α = 90 ° ,求 AA ' 的长;
(Ⅱ)如图②,若 α = 120 ° ,求点 O ' 的坐标;
(Ⅲ)在(Ⅱ)的条件下,边 OA 上 的一点 P 旋转后的对应点为 P ' ,当 O ' P + BP ' 取得最小值时,求点 P ' 的坐标(直接写出结果即可)
公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元
(Ⅰ)设租用甲种货车 x 辆 ( x 为非负整数),试填写表格.
表一:
租用甲种货车的数量 / 辆
3
7
x
租用的甲种货车最多运送机器的数量 / 台
135
租用的乙种货车最多运送机器的数量 / 台
150
表二:
租用甲种货车的费用 / 元
2800
租用乙种货车的费用 / 元
280
(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.