某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选. (1)设所选3人中女生人数为,求的分布列 (2)在男生甲被选中的情况下,求女生乙也被选中的概率.
已知函数的图象关于原点对称. (1)写出的解析式; (2)若函数为奇函数,试确定实数m的值; (3)当时,总有成立,求实数n的取值范围.
已知函数f(x)=alnx―ax―3(a∈R). (1)求函数f(x)的单调区间; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意t∈[1,2],函数g(x)=x3+x2[f′(x)+]在区间(t,3)上总不是单调函数,求m的取值范围.
(本小题满分13分) 如图所示,四棱锥中,是矩形,三角形PAD为等腰直角三角形,面面,分别为和的中点。 (1)求证:∥平面; (2)证明:平面平面; (3)求四棱锥的体积。
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件. (1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值.
设表示幂函数在上是增函数的的集合;表示不等式对任意恒成立的的集合. (1)求;(2)试写出一个解集为的不等式.