已知函数(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(Ⅲ)当x∈(0,e]时,证明:
已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD. (Ⅰ)证明:平面PAD⊥平面PCD; (Ⅱ)试在棱PB上确定一点M,使截面AMC 把几何体分成的两部分.
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和. (Ⅰ)求事件“不大于6”的概率; (Ⅱ)“为奇数”的概率和“为偶数”的概率是不是相等?证明你的结论.
设函数的最小正周期为. (Ⅰ)求的值. (Ⅱ)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.
已知函数f(x)=; (1)求y=f(x)在点P(0,1)处的切线方程; (2)设g(x)=f(x)+x-1仅有一个零点,求实数m的值; (3)试探究函数f(x)是否存在单调递减区间?若有,设其单调区间为[t,s],试求s-t的取值范围?若没有,请说明理由。
如图,已知点D(0,-2),过点D作抛物线:的切线l,切点A在第二象限。 (1)求切点A的纵坐标; (2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。