(本小题满分13分)某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒) . (1)将y表示为x的函数;(2)求车队通过隧道所用时间取最小值时车队的速度.
已知P1(3,2),P2(8,3),若点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.(1)求f()、f();(2)证明f(x)是周期函数;
设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值.
设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数.
的偶函数,其图象关于点对称,且在区间上是单调函数.求的值.