已知直线与轴轴分别交于点A和点B,点B的坐标为(0,6)求的值和点A的坐标;在矩形OACB中,某动点P从点B出发以每秒1个单位的速度沿折线B-C-A运动.运动至点A停止.直线PD⊥AB于点D,与轴交于点E.设在矩形OACB中直线PD未扫过的面积为S,运动时间为 t.①求与t的函数关系式;②⊙Q是△OAB的内切圆,问:t为何值时,PE与⊙Q相交的弦长为2.4 ?
如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3 ,AB=5,求的值.
计算:.
在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.
如图,在平面直角坐标系中,抛物线y=ax2+bx-4与x轴交于点A (-2,0)和点B,与y轴交于点C, 直线x=1是该抛物线的对称轴。 (1)求抛物线的解析式; (2)若两动点M, H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0),求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值。
如图,C是以AB为直径的上一点,过点O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P. (1)求证:PC是⊙O的切线; (2)若AF=1,OA=, 求PC的长。