如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度数
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为(千米),图中的折线表示从两车出发至快车到达乙地过程中与之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中关于的函数的大致图象.
已知:用2辆型车和1辆型车装满货物一次可运货10吨;用1辆型车和2辆型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆型车和1辆型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若型车每辆需租金100元/次,型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
如图,为线段上一动点,分别过点作,,连接.已知,,,设.(1)用含的代数式表示的长;(2)请问点满足什么条件时,的值最小?(3)根据(2)中的规律和结论,请构图求出代数式的最小值.
如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)四边形AECF是什么特殊的四边形?说明理由;(2)若AB=8,求菱形的面积.
如图,两直线:、:相交于点P,与轴分别相交于A、B两点.(1)求P点的坐标;(2)求S△PAB.