如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1, -3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.
如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5, 2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′. (1)画出△AB′C′; (2)求点C′的坐标
解一元二次方程:
如图,已知抛物线过(1,4)与(4,-5)两点,且.与一直线相交于A,C两点 (1)求该抛物线解析式; (2)求A,C两点的坐标; (3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式,已知球网与O点的水平距离为9m,球网高度为2.43m,球场另一边的底线距O点的水平距离为18m. (1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围) (2)当h=2.6时,球能否越过球网?球会不会出底线?请说明理由; (3)若球一定能越过球网,且刚好落在底线上,求h的值.
如图,直线与反比例函数的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(,m). (1)求反比例函数的解析式; (2)若点P(n,-1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.