先化简、再求值:,其中a=-3.
(本小题8分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.
(本小题10分)(1)解不等式:(2)解方程:
(本小题10分)(1)计算: ;(2)化简:
.在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连结EQ.设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在线段BD(不包括点B、D)上移动时,设△EDQ的面积为,求与的函数关系式,并写出自变量的取值范围;(3)当为何值时,△EDQ为直角三角形.
在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与 y 轴交于点,点的坐标为(3,0),将直线 y="kx" 沿 y 轴向上平移3个单位长度后恰好经过两点.(1)求直线及抛物线的解析式;(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;(3)连结,求与两角和的度数.