阅读下面的材料,并解答问题:材料:已知当a、b是正数时,有下列命题≤1≤≤ 3(1)根据以上三个命题所提供的规律猜想:≤ ;(2)以上规律可用字母表示为 ; (3)建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元. 设池底的长为x米,水池总造价为y元,应用上述的规律,求水池的最低造价.
已知函数, (l)求函数的最小正周期; (2)当时,求函数f(x)的单调区间。
已知函数 (1)若函数的图象切x轴于点(2,0),求a、b的值; (2)设函数的图象上任意一点的切线斜率为k,试求的充要条件; (3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为. (1)求椭圆C的方程和其“准圆”方程; (2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知函数, 数列满足. (1)求数列的通项公式; (2)令,若对一切成立,求最小正整数m.
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G. (l)求证:EG∥; (2)求二面角的余弦值; (3)求正方体被平面所截得的几何体的体积.