某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用的资金不低于190万元,不高于200万元。该公司有哪几种进货方案?该公司采用哪种进货方案可获得最大利润?最大利润是多少?若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案。
如图,在△ABC中,AB=AC,∠ABC=72°. (1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
解方程:.
先化简再求值:,其中.
计算:(结果保留π)
如图,一次函数y=x﹣5分别交x轴、y轴于A、B两点,二次函数y=﹣x2+bx+c的图象经过A、B两点. (1)求二次函数的解析式; (2)设D、E是线段AB上异于A、B的两个动点(E点位于D点上方),DE=. ①若点D的横坐标为t,用含t的代数式表示D、E的坐标; ②抛物线上是否存在点F,使点F与点D关于x轴对称,如果存在,请求出△AEF的面积;如果不存在,请说明理由.