某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用的资金不低于190万元,不高于200万元。该公司有哪几种进货方案?该公司采用哪种进货方案可获得最大利润?最大利润是多少?若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案。
在数轴上分别表示下列各数,并比较它们的大小,用“<”连接. -2, -0.5,,, .
如图,在平面直角坐标系中,矩形ABCO的OA边在轴上,OC边在轴上,且B点坐标为(4,3).动点M、N分别从点O、B同时出发,以1单位/秒的速度运动(点M沿OA向终点A运动,点N沿BC向终点C运动),过点N作NP∥AB交AC于点P,连结MP. (1)直接写出OA、AB的长度; (2)试说明△CPN∽△CAB; (3)在两点的运动过程中,请求出ΔMPA的面积S与运动时间的函数关系式; (4)在运动过程中,△MPA的面积S是否存在最大值?若存在,请求出当为何值时有最大值,并求出最大值;若不存在,请说明理由.
已知:关于的方程. (1)若方程有两个相等的实数根,求的值,并求出这时的根. (2)问:是否存在正数,使方程的两个实数根的平方和等于136;若存在,请求出满足条件的值;若不存在,请说明理由.
某百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件. (1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元? (2)用配方法说明:要想盈利最多,每件童装应降价多少元?
阅读下面的例题,请参照例题解方程. 例:解方程 解:(1)当≥0时,原方程化为, 解得:(不合题意,舍去). (2)当<0时,原方程化为, 解得:(不合题意,舍去). ∴原方程的根是. 解方程