如图,在梯形ABCD中,AD//BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.当x的值为____________时,以点P、A、D、E为顶点的四边形为直角梯形当x的值为____________时,以点P、A、D、E为顶点的四边形为平行四边形;点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.
如图,在Rt△ABC中,AC=4cm,BC=3cm,点P由B出发沿BA的方向向点A匀速运动,速度为1cm/s,同时点Q由A出发沿AC的方向向点C匀速运动,速度为2cm/s,连接PQ,设运动的时间为t(s),其中0<t<2,解答下列问题:(1)当t为何值时,以P、Q、A为顶点的三角形与△ABC相似? (2)是否存在某一时刻t,线段PQ将△ABC的面积分成1:2两部分?若存在,求出此时的t,若不存在,请说明理由;(3)点P、Q在运动的过程中,△CPQ能否成为等腰三角形?若能,请求出此时t的值,若不存在,请说明理由.
将一块含有45°的三角板ABC的顶点A放在⊙O上,且AC与⊙O相切于点A(如图1),将△ABC从点A开始,绕着点A顺时针旋转,设旋转角为α(0°<α<135°),旋转后,AC、AB分别与⊙O交于点E,F,连接EF(如图2).已知AC=8,⊙O的半径为4.(1)在旋转过程中,有以下几个量:①弦EF的长;②的长;③∠AFE的度数;④点O到EF的距离.其中不变的量是___________________(填序号);(2)当α=________°时,BC与⊙O相切(直接写出答案);(3)当BC与⊙O相切时,求△AEF的面积.
如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且=,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点.(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.
2013年,无锡市蠡湖新城某楼盘以每平方米12000元的均价对外销售.由于楼盘滞销,房地产商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年该楼盘的均价为每平方米9720元.(1)求平均每年下调的百分率;(2)假设2016年该楼盘的均价仍然下调相同的百分率,李强准备购买一套100平方米的住房,他持有现金30万元,可在银行贷款50万元,李强的愿望能否实现?(房价按照均价计算,不考虑其它因素.)