已知函数对任意,且x>0时<0,。①求②求证:为奇函数;③ 求在上的最大值和最小值。
(1)求函数的表达式,并求其定义域。(2)当时,求函数的值域
(1)求博物馆支付总费用y与保护罩容积V之间的函数关系式;(2)求博物馆支付总费用的最小值。
(1)求的周期; (2)求在上的减区间; (3)若,,求的值
于定义在D上的函数,若同时满足①存在闭区间,使得任取,都有(是常数);②对于D内任意,当时总有;则称为“平底型”函数.(1)判断 ,是否是“平底型”函数?简要说明理由;(2)设是(1)中的“平底型”函数,若,()对一切恒成立,求实数的范围;(3)若是“平底型”函数,求和的值.
如图△ABC为正三角形,边长为2,以点A为圆心,1为半径作圆.(1)若,求;(2)PQ为圆A的任意一条直径,求的最大值.