于定义在D上的函数,若同时满足①存在闭区间,使得任取,都有(是常数);②对于D内任意,当时总有;则称为“平底型”函数.(1)判断 ,是否是“平底型”函数?简要说明理由;(2)设是(1)中的“平底型”函数,若,()对一切恒成立,求实数的范围;(3)若是“平底型”函数,求和的值.
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为 (1)求椭圆的标准方程; (2)若直线交椭圆于两点,当时求直线的方程
已知直线与抛物线没有交点;方程表示椭圆;若为真命题,试求实数的取值范围.
已知的图象经过点,且在处的切线方程是 (1)求的解析式;(2)求的单调递增区间
如图,动点到两定点、构成,且,设动点的轨迹为。 (1)求轨迹的方程; (2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。
如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,. (1)设是的中点,证明:平面; (2)证明:在内存在一点,使平面,并求点到,的距离.